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1. Introduction

Recent observations strongly support a period of inflation in the early universe [1]. In fact

many models of inflation, some of which were quite popular not too long ago, are now ruled

out [2]. In light of this remarkable progress it is tempting to ask, perhaps prematurely, what

might be the experimental signatures of a pre-inflationary period, assuming such a period

existed. This and related questions were addressed by various authors (see e.g. [3]). Our

goal here is to connect this question with the overshoot problem associated with small-field

inflation.

If the total number of e-foldings during inflation, N tot
e , is much larger then the number

of e-foldings needed to resolve the big-bang puzzles, NBB
e , then the probability of finding

any pre-inflationary signature in the visible universe is likely to be negligible. The diffi-

culties encountered in realizing in string theory models of inflation with a large number

of e-foldings perhaps should be viewed as an indication that N tot
e is not much larger than

NBB
e , in which case pre-inflationary signatures might be detectable.

Most stringy models of inflation suggested so far are models of small-field inflation.

Such models often suffer from the overshoot problem [4], which in this context means that,

against the spirit of inflation, one needs to tune the initial conditions of the inflaton for

inflation to take place. This problem received a lot of attention over the years (mostly in

the context of moduli stabilization), and various ways to overcome it were proposed (see

e.g. [5]). A nice aspect of the overshoot problem associated with small-field inflation is

that any mechanism which resolves it should act mostly right before inflation, and so it is

possible that it leaves detectable imprints (assuming ∆Ne = N tot
e −NBB

e is not too large).

Recently a particularly efficient resolution to the problem was suggested in [6]. The

resolution relies on the existence of particles with mass that depends on the expectation

value of the inflaton. These particles push the inflaton in the opposite direction than the

static potential does (m,φ V,φ < 0), and slow down the inflaton at the slow roll region. In
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the present paper we show that this pre-inflationary scenario has a distinct signature: a

formation of giant spherically symmetric overdense regions with a radius of at least 110

Mpc. Each of these particles present at the beginning of inflation provides the seed of a

single giant spherically symmetric structure. The properties of these giant structures are

fixed by m,φ.

The paper is organized as follows: In the next section we review the mechanism pro-

posed in [6] to resolve the overshoot problem. In section 3 we show that this mechanism

leads to the formation of overdense regions and study their properties. We argue that if

N tot
e is not much larger than NBB

e some of these giant structures should be found in the

visible universe.

2. A review of [6]

Most models of inflation in string theory are small-field models1 (for reviews of stringy

inflation see [9]). Namely, the slow roll conditions are satisfied over a small distance in the

field space of the canonically normalized inflaton. Roughly speaking the reason is that in

string theory there are severe constraints on the possible terms that could contribute to the

inflaton potential. Hence it is hard to construct a potential for the inflaton that satisfies

the slow roll condition over a large distance in field space.

Typically models of small-field inflation suffer from the overshoot problem. This prob-

lem was first raised in the context of moduli stabilization in [4] and is very much relevant

also for small-field inflation (see e.g [10]). The problem is that a generic initial condition

is not at the region where the slow roll conditions are met, and if we start away from the

slow roll region the inflaton will overshoot it without ever being dominated by the potential

energy. This happens because in small-field inflation, by definition, the slow roll region is

small and the Hubble friction does not have enough time to slow down the inflaton. As

a result the universe does not inflate despite the fact that the inflaton passes through the

slow roll region.

Most of the resolutions proposed to the overshoot problem [5] are based on the fact

that the energy density of a scalar field dominated by its kinetic energy scales like 1/a(t)6.

Thus, almost any other contribution to the energy density, like matter or radiation, does

not drop as fast and eventually it takes over. As a result the Hubble friction becomes larger

and it could potentially slow down the inflaton at the slow roll region. Typically, however,

these kind of mechanisms are more efficient when addressing the overshoot problem in the

context of moduli stabilization than in the context of small-field inflation.

Recently [6] a more efficient resolution to the problem was proposed in the context of

string theory.2 It was noticed in [6] that at least in some cases there are particles with

masses that depend on the inflaton and satisfy

m,φ V,φ < 0. (2.1)

1As far as we know the only large-field model of inflation in string theory was proposed recently [8].
2In relation with the overshoot problem associated with moduli stabilization a similar mechanism was

proposed in [7].
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(a) (b) (c) (d)

Figure 1: A heuristic illustration of how a time dependent potential, that scales like 1/a3(t),

resolves the overshoot problem of small-field models of inflation. The solid line represents the static

potential, the dashed line the time dependent potential that is induced by the particles and the

blue dot the time dependent value of the inflaton.

Such particles will change dramatically the dynamics of the inflaton in the following way.

Much like any other particles these particles are expected to be produced thermally when

the energy density is high (figure 1(a)). Since m,φ V,φ < 0 their density will induce an

effective potential that pushes the inflaton in the opposite direction than the static potential

does (figure 1(a)). As the universe expands the density of these particles and their effective

potential grows weak and the inflaton minimizes the time dependent potential energy

(figure 1(b)). Upon entering the slow roll region the slope of the static potential becomes

negligible and is not able to balance the potential induced by the particles (figure 1(c)).

Hence the particles get diluted while the inflaton stays in the slow roll region (figure 1(d)).

This sets up the initial condition for the inflaton at the slow roll region.

This mechanism is rather general and is expected to work in any model that includes

particles that satisfy m,φ V,φ < 0 with a large enough m,φ. Let us review how this comes

about in the stringy example considered in [6]. The setup is of modular inflation [11]. We

consider ten dimensional string theory with topology R3,1×X where X is a six dimensional

compact manifold. We assume that all moduli but the volume of X are fixed and consider

the possibility that the inflaton is related to the volume of X. The relation between the

canonically normalized inflaton and VX is

L = eφ/
√

24, where L ∼ V
1/6
X . (2.2)

String theory allows only for a small number of terms to appear in the classical potential

for L (or φ). These are due to wrapped branes, fluxes and curvature. For example in type

IIB we can have

V (φ) =
∑

a

CaL
−a, with a = 8, 10, 12, 16, (2.3)

and in type IIA

V (φ) =
∑

a

CaL
−a, with a = 8, 9, 10, 11, 14, 18. (2.4)

Some of the constants, Ca, can be negative but most of them cannot, and depending on

the topology of X some of them have to vanish. Moreover all the terms go to zero at least
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as fast as 1/L8 when L → ∞. As a result it is practically impossible to satisfy the slow roll

condition over a wide region of φ. Namely, in this setup one cannot construct a large-field

model of inflation. In fact it is not easy to construct a model of small-field inflation either.

The simplest model is of an inflection point inflation constructed with the help of three

terms. As argued above and as was illustrated in [6] this model suffers from the overshoot

problem. It can be shown that the overshoot problem is generic in this setup.

The nice feature of the model is that it includes also particles with m,φ V,φ < 0 which

resolve the overshoot problem via the mechanism described above. The relevant particles

are D-branes which wrap some of the cycles of X. The masses of these particles are

MD−brane = cBLB , with B > 0, (2.5)

where cB is a positive constant that depends on the value of the other moduli field (in

particular the dilaton) which are assumed to be fixed. Since no concrete mechanism for

fixing them was proposed in [6] cB cannot be calculated in this approximated setup. Again

the possible values of B depend on the type of string theory under consideration, and the

topology of X. In type IIA the possible values of B are 1 or 3 and in type IIB there is only

one possible value B = 2.

A natural question to ask is whether these particles lead to any clear experimental

prediction which could test the mechanism of [6]. Much like monopoles, or any other heavy

particles, they will get diluted exponentially fast during inflation, and so their contribution

to the total energy in the universe at the end of inflation is negligible. On the other hand

their imprint on structure formation could be significant and perhaps even detectable. This

is the subject of the next section.

3. Giant structures

The discussion in the previous section was done in the homogenous approximation. Namely,

we considered the net effect particles with m,φV,φ < 0 have on the evolution of the zero

mode of the inflaton. During inflation the proper distance between the particles grows

exponentially fast and very quickly the homogenous approximation breaks down at macro-

scopic scales. Since these particles couple directly to the inflaton and since this coupling

played such an important role in the dynamics of the inflaton we expect the inhomogeneities

due to the individual particles to induce inhomogeneities of the inflaton.3 It is well known

that inhomogeneities of the inflaton provide the seeds of structure formation. Hence, it is

reasonable to suspect that these particles could affect structure formation in an interesting

way.

We wish to study the effect a single particle with m,φV,φ < 0 present at the beginning

of inflation has on structure formation. Before we turn to the actual calculation it is

instructive to recall the intuitive relation between the inflaton and structure formation [12].

During inflation φ plays the role of a clock and in particular it determines the time at which

inflation ends. A non-uniform inflaton will cause inflation to end in a non-uniform fashion.

3On top of the usual inflaton’s inhomogeneities due to quantum effects.
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Regions where inflation ends first had more time to expand after inflation and so their

density is slightly smaller. A particle with m,φV,φ < 0 pushes the inflaton in the opposite

direction than the static potential does. Hence inflation will end first away from the particle.

Therefore, we expect such a particle to provide the seed of an overdense region.

To estimate the size and density of this overdense region we start by calculating the

non-uniform shape of the inflaton caused by a single particle with m,φV,φ < 0. For simplicity

we consider a spatially flat universe

ds2 = −dt2 + a(t)2dx2
i .

Since the mass of the particle depends on the inflaton its presence modifies the inflaton

equation of motion directly

φ̈ + 3Hφ̇ − 1

a(t)2
∇2φ + V,φ + m,φ

δ3(xi)

a(t)3
= 0. (3.1)

To solve this equation we separate the solution into two parts: the zero mode and the r

dependent perturbation

φ(r, t) = φ(t) + δφ(r, t). (3.2)

φ(t) solves the standard equation

φ̈ + 3Hφ̇ + V,φ = 0, (3.3)

and δφ(r, t) solves the linear equation

δ̈φ + 3H ˙δφ − 1

a(t)2
∇2δφ + V,φφδφ +

m,φ

a(t)3
δ3(xi) = 0. (3.4)

During the period of slow roll inflation the V,φφ term can be neglected and we have

δ̈φ + 3H ˙δφ − 1

a(t)2
∇2δφ +

m,φ

a(t)3
δ3(xi) = 0. (3.5)

As expected we ended up with the familiar equation for the perturbation only that now

there is a source located at the origin.

At early times, when ra(t) ≪ 1/H, the time derivatives in (3.5) are negligible and the

solution takes the familiar form

δφ = − m,φ

4πra(t)
, (3.6)

which in momentum space gives

δφk = − m,φ

(2π)3/2k2a(t)
. (3.7)

At late times the Hubble friction term in (3.5) becomes important and cause a freeze out

of different modes at different times. As usual in an accelerating universe the freeze out

occurs when a(t) ∼ k/H and so the late time solution reads

δφk = −C
Hm,φ

k3
, (3.8)
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where C is a positive constant. In the appendix we calculate C and find

C =
1√
32π

. (3.9)

Next we use the well know relation (see e.g. [13]) between the inflaton and structure

formation

δk =
2

5

k2

H2
0

T (k)Rk. (3.10)

Here δk is the momentum mode of δρ/ρ, H0 is the present Hubble scale, Rk is determined

during inflation

Rk = −Hinflation

φ̇
δφk, (3.11)

and T (k) is the transfer function.

For simplicity we make two approximations. First we take the most naive approxima-

tion to the transfer function

T (k) =

{

1 for k < keq

k2
eq/k

2 for k > keq,
(3.12)

where 1/keq is the comoving Hubble length at matter-radiation equality ∼ 14Ω−1
M h−2 ∼

110 Mpc. This approximation captures, in a crude fashion, the fact that the formation

of structure during the radiation dominated era is suppressed compered to the matter

dominated era. However it neglects the less clean physics associated with modes which enter

the horizon during the radiation dominated era. The corrections to (3.12) are logarithmic

in k (see e.g. [13]).

The second approximation is the fact that we ignore the effects due to dark energy

which become important at late times. That is we take a trivial growth function. If the

size of the formed structure is not too large a significant portion of the evolution is in the

matter dominated era, and the approximation is expected to be fairly good.

Clearly these approximations are rather crude, and to have a better description of the

formed structure we need to go beyond them. This will be done elsewhere. Here we take

advantage of the fact that these approximations yield simple expressions that, we believe,

capture the main effects.

Let us first assume that the modes that are most relevant for the structure formation

are modes with k < keq. Momentarily we will see what is the condition m,φ has to satisfy

for this to be the case. In this case T (k) = 1, and

δk = −2

5

k2

H2
0

Hinflation

φ̇
δφk. (3.13)

Using the slow roll equation (3Hφ̇ = −V,φ) and (3.8), (3.9) we get

δk = − V 3/2m,φ

10
√

6πH2
0V,φk

= 1.2 × 10−5 |m,φ|
H2

0k
, (3.14)
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where in the second equality we used the COBE normalization (V 3/2

V,φ
= 5.2×10−4) and (2.1).

Transforming back into position space we find that

δρ

ρ
∼ 10−5 |m,φ|

H2
0r2

, (3.15)

and that the size of the overdense region (fixed by δρ = ρ) is

r ∼ m
1/2
,φ 13 Mpc. (3.16)

We see that for the assumption that the most relevant modes are modes with k < keq to

hold m,φ should be larger than ∼ (110/13)2 ∼ 70, which is quite large given that m,φ is a

dimensionless parameter.

Next we consider the probably more realistic case with m,φ < 70 in which the relevant

modes have k > keq. Then T (k) = k2
eq/k

2 and

δk = −2

5

k2
eq

H2
0

Hinflation

φ̇
δφk. (3.17)

Following the same steps as before we get

δk = 1.2 × 10−5
k2
eq|m,φ|
H2

0k3
= 1.6 × 10−2 |m,φ|

k3
. (3.18)

Transforming back into position space we find for r < k−1
eq ∼ 110 Mpc that δρ

ρ is approxi-

mately a constant4

δρ

ρ
∼ 10−2|m,φ|. (3.19)

Therefore, for m,φ of order 1 we expect δρ
ρ to be fairly small ∼ 10−2. However, this small

effect takes place within a giant spherically symmetric region with a radius of about 110

Mpc. Within this region we expect to find the usual structures (due to quantum fluctuations

during inflation) at much smaller scales but with δρ
ρ much larger than 10−2|m,φ|.

Put differently each particle creates a giant region of size of order 220 Mpc in which the

universe looks roughly like it used to look at z ∼ m,φ/100. That is, it has similar structure

as in the rest of the universe: Most of the galaxies are in a nearly spherically symmetric

overdense region of size of a few Mpc. Some of these almost spherically symmetric regions

are connected via filaments with smaller density and size of order 10-30 Mpc. The filaments

are connect via walls with an even lower density, and there are voids between the walls.

The only difference is that the average density is larger than in the rest of the universe.

Natural questions to ask at this stage are:

1. How large is m,φ in the scenario of [6]?

2. How many such overdense regions should we expect to find in the visible universe?

4Neglecting logarithmic effects which are ignored since the transfer function we work with, (3.12), neglects

various logarithmic corrections.
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Let us begin with the first question. As described in the previous section quite

generically we expect m,φ to be fairly large in order to resolve the overshoot problem.

From (2.2), (2.5) we find that in the concrete example studied in [6]

m,φ =
cB B√

24
LB

SR. (3.20)

In [6] it was shown that the COBE normalization implies

LSR
∼= 50a

1/8
3 , (3.21)

where a3 is a constant that, much like cB , depends on the values at which the other moduli

are fixed and so it is not known within the approximated setup of [6]. Combining (3.20)

with (3.21) we get

m,φ
∼= cBBa

B/8
3

50B

√
24

. (3.22)

We see that unless cB and a3 obtain unusually small values m,φ is larger then 1. Hence

the effect such a particle has on structure formation should be significant.

It is less clear whether m,φ is smaller or larger than ∼ 70. Again with the assumption

that cB and a3 are of order one we see that for B = 1 it is most likely that m,φ < 70 while

for B = 3 we probably have m,φ > 70. The type IIB case (B = 2) tends to give m,φ > 70,

but it could easily give m,φ < 70. Thus we do not know if such a particle will lead to the

formation of a structure larger than 110 Mpc or not. We reemphasis that in models in

which all modui but the inflaton are fixed we do expect to be able to compute m,φ and to

make sharp prediction about the giant structure.

We assumed so far that the particles are isolated. However since they interact also via

a scalar (the inflaton) exchange it is possible that they form clusters in the pre-inflationary

stage.5 In [18] this was shown to happen in the mass varying neutrinos scenario of [19].

Such a cluster of particles will have meff
,φ = Ncluster m,φ. Thus this could drastically improve

the local efficiency of the mechanism of [6] especially when m,φ is small (which is likely to

be the case in an effective field theory set-up, since m,φ is dimensionless) and could change

the properties of the giant structure. This interesting possibility will be studied elsewhere.

Unfortunately, even in models in which all moduli but the inflaton are fixed, the answer

to the second question is not clear. The reason is that the answer is exponentially sensitive

to N tot
e : The density of these particles at the beginning of inflation, n0, must be large

enough to slow down the inflaton at the slow roll region. A rough lower bound on n0

comes from demanding that just before infaltion begins the slope of the potential induced

by the particles is larger then the one of the static potential. This gives

n0 >
VSL

m,φ
. (3.23)

5We thank the referee of the paper for raising this issue.
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Using the COBE normalization6 we find that the total number of particles within the

Horizon at the beginning of inflation is

N0 =
n0

H3
>

1

m,φH
∼ 104

m,φ
√

ǫ
. (3.24)

Typically in small-field inflation ǫ ≪ η ∼ 0.05. Thus a fair estimate is N0 ∼ 106. This

implies that the number of giant overdense regions in the visible universe is about

106e−3(Ntot
e −NBB

e ), (3.25)

and that for the number of giant overdense regions in the universe to be of order 1 we

should have

∆Ne = N tot
e − NBB

e ∼ 5. (3.26)

With our present knowledge it is hard to tell whether this is likely or not to be the case.

An argument against this is that ∆Ne/N
BB
e ∼ 1/10. So there is an extra tuning in the

model. On the other hand one can argue that since the amount of fine tuning needed in

order to have N tot
e ≫ 1 grows with N tot

e it is likely that N tot
e is not much larger then NBB

e .

We emphasis that (3.26) is merely an estimate based on the assumption of high scale

inflation. In low scale inflation with VSL as low as TeV4 [16] we find that for the number

of giant overdense regions in the universe to be of order 1 we should have

∆Ne ∼ 10, (3.27)

and, since in low scale inflation NBB
e ∼ 40, that ∆Ne/N

BB
e ∼ 1/4.

Note that there are other particles in the model with mass that depends on the inflaton,

but with m,φ V,φ > 0. These are the perturbative excitations with

mper ∼ L−A, A > 0, (3.28)

which are also expected to be produce thermally at stage (a) of figure 1. Hence some of

them are expected to be found at the begging of inflation. Should we conclude from this

that if giant overdense regions are found then giant voids should be found as well? At

least in the model of [6] the answer is no. The reason is that since from (3.21) we expect

LSR ≫ 1 we find from (3.28) that for the perturbative excitation

|mper
,φ | ≪ 1. (3.29)

Hence the effect of these particles on structure formation is expected to be negligible (even

when ∆Ne is small). In fact, this condition must be satisfied. Otherwise the mechanism

described in section 2 will not resolve the overshoot problem as the induced potential due

6Note that the COBE normalization fixes V 3/2/V,φ at around NBB

e e-foldings before the end of inflation,

while here we are using it N tot

e e-foldings before the end of inflation. The difference between the two is not

necessarily negligible. However, since we are merely trying to estimate N0 this is a reasonable approximation

to use.
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to the particles with m,φ V,φ > 0 will cancel the induced potential due to the particles with

m,φ V,φ < 0.

This of course does not mean that there are no other models in which giant voids could

be formed via the mechanism described here (with m,φ V,φ > 0). We mention this since,

in relation with the WMAP cold spot [20], some arguments were already made for a giant

void [21]. See however [22].

4. Summary

In this paper we showed that the pre-inflationary scenario proposed in [6] to resolve the over-

shoot problem of small-field inflation leads to the formation of giant spherically symmetric

overdense regions. The number of these giant overdense regions in the visible universe is

exponentially sensitive to ∆Ne, and so cannot be determined with our present knowledge.

Since typically the structure in the universe is not formed in a spherically symmetric

fashion this appears to be a distinct feature of [6] that cannot be confused with other

possible imprints due to finite ∆Ne or higher order terms. Hence we believe that even a

detection of a single giant spherically symmetric overdense region with a radius of at least

110 Mpc should be viewed as evidence for the scenario of [6]. What in our opinion should

be viewed as a clear cut evidence for [6] is a detection of several spherically symmetric

giant overdense regions with the same properties. The reason is that it seems extremely

unlikely that a different scenario could lead to a similar anomaly in structure formation.

Since the properties of the giant structure are fixed by a specific parameter in the the-

ory, m,φ, such a development could perhaps open an interesting dialog between cosmology

and string theory.
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A. Derivation of eq. (3.9)

Here we derive (3.9). The starting point is (3.5). To solve this equation it is useful to

define the Sasaki-Mukhanov variable [23]

v ≡ aδφ (A.1)

and to switch to conformal time, dτ = dt/a(t), which in de-Sitter space gives

τ = − 1

Ha
. (A.2)

In these variables (3.5) reads

v̈ −
(

∇2 +
ä

a

)

v = −m,φδ3(xi), (A.3)
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which in momentum space gives

v̈k +

(

k2 − ä

a

)

vk = − m,φ

(2π)3/2
. (A.4)

In de-Sitter space ä
a = 2

τ2 and the homogenous solutions (m,φ = 0) take the form

vk = A1(k)F1(k, τ) + A2(k)F2(k, τ), (A.5)

where

F1(k, τ) =
1

τ
(cos(τk)τk − sin(τk)) , F2(k, τ) =

1

τ
(cos(τk) + sin(τk)τk) . (A.6)

These solutions have the well known behavior. At early times when τk ≫ 1 they oscillate

F1(k, τ) = k cos(τk), F2(k, τ) = k sin(τk), (A.7)

and at late times (τ → 0−) they give a decaying mode and a growing mode (that becomes

a constant when transforming back to the original δφk)

F1(k, τ) = −1

3
τ2k3, F2(k, τ) =

1

τ
. (A.8)

The inhomogeneous solution of

v̈k +

(

k2 − 2

τ2

)

vk = g(t) (A.9)

can be written in the following form

vk(τ) =
1

k3

(

F2(k, τ)

∫ τ

F1(k, τ̃ )g(τ̃ )dτ̃ − F1(k, τ)

∫ τ

F2(k, τ̃ )g(τ̃ )dτ̃

)

. (A.10)

We are interested in the case g(t) = − m,φ

(2π)3/2
in which

∫ τ

F1(k, τ̃ )g(τ̃ )dτ̃ = − m,φ

(2π)3/2
(sin(τk) − Si(τk) + C1) , (A.11)

∫ τ

F2(k, τ̃ )g(τ̃ )dτ̃ = − m,φ

(2π)3/2
(− cos(τk) + Ci(τk) + C2) . (A.12)

The constants of integration C1 and C2 are fixed by the initial condition (3.6) at τ → −∞,

which in terms of the variable vk is

vk = − m,φ

(2π)3/2k2
. (A.13)

This implies that

C1 = Si(−∞) = −π

2
, C2 = −Ci(−∞) = 0. (A.14)

Therefore at late times (τ → 0−) we find that

vk =
m,φ√

32πτk3
, (A.15)

and that

δφk = − m,φH√
32πk3

. (A.16)
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